Conditional convergence
In mathematics, a series or integral is said to be conditionally convergent if it converges, but it does not converge absolutely.
Definition
[edit]More precisely, a series of real numbers is said to converge conditionally if exists (as a finite real number, i.e. not or ), but
A classic example is the alternating harmonic series given by which converges to , but is not absolutely convergent (see Harmonic series).
Bernhard Riemann proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see Riemann series theorem. Agnew's theorem describes rearrangements that preserve convergence for all convergent series.
The Lévy–Steinitz theorem identifies the set of values to which a series of terms in Rn can converge.
Indefinite integrals may also be conditionally convergent. A typical example of a conditionally convergent integral is (see Fresnel integral) where the integrand oscillates between positive and negative values indefinitely, but enclosing smaller areas each time.
See also
[edit]References
[edit]- Walter Rudin, Principles of Mathematical Analysis (McGraw-Hill: New York, 1964).